

FEATURES

- ► Efficiency up to 82%
- ▶ 1500VDC Isolation
- ► MTBF > 1,000,000 Hours
- ≥ 2:1 Wide Input Range
- ► Low Cost
- ► Complies with EN55022 Class A
- ► Temperature Performance -25°C to +85°C
- ► UL 94V-0 Package Material
- ► Internal SMD Construction
- ► Industry Standard Pinout
- > 3 Years Product Warranty

PRODUCT OVERVIEW

Minmax's MIW1500-Series power modules operate over input voltage ranges of 4.5-9VDC, 9-18VDC and 18-36VDC which provide precisely regulated output voltages of 5V, 12V, ±12V and ±15VDC.

The -25°C to +85°C operating temperature range makes it ideal for data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

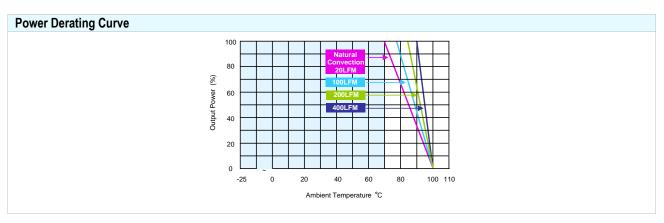
The modules have a maximum power rating of 3W and a typical full-load efficiency of 82%, continuous short circuit, 45mA output ripple, EN55022 Class A conducted noise compliance minimize design-in time, cost and eliminate the need for external filtering.

Model Selection	n Guide								
Model	Input	Output	Ou	tput	Input Current		Reflected	Max. capacitive	Efficiency
Number	Voltage	Voltage	Cui	rrent				Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MIW1512		5	600	60	833		100	470	72
MIW1513	5	12	250	50	789	40			76
MIW1516	(4.5 ~ 9)	±12	±125	±12.5	779	40		220#	77
MIW1517		±15	±100	±10	779				77
MIW1522		5	600	60	329	20	30	470 220#	76
MIW1523	12	12	250	50	313				80
MIW1526	(9 ~ 18)	±12	±125	±12.5	313	20			80
MIW1527		±15	±100	±10	313				80
MIW1532		5	600	60	160			470 220#	78
MIW1533	24	12	250	50	152	5	15		82
MIW1536	(18 ~ 36)	±12	±125	±12.5	152				82
MIW1537		±15	±100	±10	152				82

For each output

Parameter	Model	Min.	Тур.	Max.	Unit	
	5V Input Models	-0.7		11		
nput Surge Voltage (1 sec. max.)	12V Input Models	-0.7		25		
	24V Input Models	-0.7		50	1	
	5V Input Models	3.5	4	4.5	VDC	
Start-Up Threshold Voltage	12V Input Models	4.5	7	9		
	24V Input Models	8	12	18		
	5V Input Models		3.5	4		
Jnder Voltage Shutdown	12V Input Models		6.5	8.5		
	24V Input Models		11	17		
Reverse Polarity Input Current	ort Circuit Input Power			1	Α	
Short Circuit Input Power			1000	2000	mW	
nternal Power Dissipation	All Models			2500	mW	
Conducted EMI		Compliar	ice to EN 55022,clas	s A and FCC part 15	,class A	

E-mail:sales@minmax.com.tw Tel:886-6-2923150

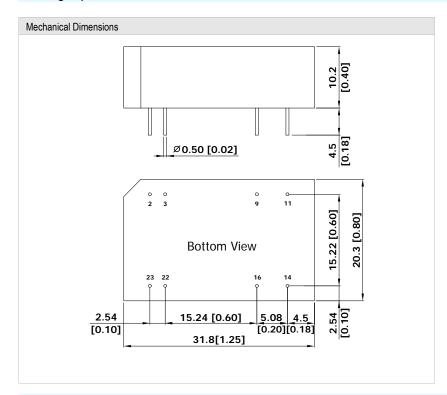

DC/DC CONVERTER 3W, DIP-Package

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy	At 50% Load and Nominal Vin			±2.0	%Vom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.2	±0.5	%
Load Regulation	lo=10% to 100%		±0.2	±0.5	%
Ripple & Noise (20MHz)			25	50	mV _{P-P}
Transient Recovery Time	250/ Lond Charles		300	500	μsec
Transient Response Deviation	25% Load Step Change		±3	±6	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	120	TBD		%
Short Circuit Protection	Continuous				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	1500			VDC
I/O Isolation Resistance	500 VDC	1000			ΜΩ
I/O Isolation Capacitance	100KHz, 1V		350	500	pF
Switching Frequency		200	300	450	KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours
Safety Approvals	UL/cUL 60950-1 rec	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1			

Input Fuse						
12V Input Models	24V Input Models	48V Input Models				
700mA Slow-Blow Type	350mA Slow-Blow Type	135mA Slow-Blow Type				

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-25	+85	°C		
Case Temperature			+90	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling		Free-Air conv	rection			
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		



DC/DC CONVERTER 3W, DIP-Package

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- Transient recovery time is measured to within 1% error band for a step change in output load of 50% to 100%
- 3 Ripple & Noise measurement bandwidth is 0-20MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- All DC/DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact factory.
- 7 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- Specifications are subject to change without notice.

Package Specifications

Pin Connections					
Pin	Single Output	Dual Output			
2	-Vin	-Vin			
3	-Vin	-Vin			
9	No Pin	Common			
11	NC	-Vout			
14	+Vout	+Vout			
16	-Vout	Common			
22	+Vin	+Vin			
23	+Vin	+Vin			

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

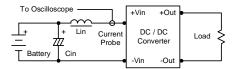
Physical Characteristics

: 31.8x20.3x10.2mm (1.25x0.80x0.40 inches) ase Size

Case Material Non-Conductive Black Plastic

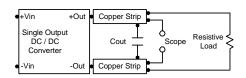
Pin Material Copper-Clad Steel Wire

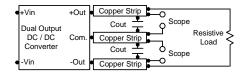
Weight : 12.2g



DC/DC CONVERTER 3W. DIP-Package

Test Setup

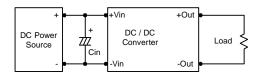

Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ KHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

Peak-to-Peak Output Noise Measurement Test

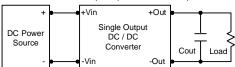
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

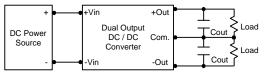
Technical Notes


Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

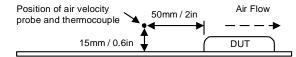
Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 8.2μF for the 5V input devices, a 3.3μF for the 12V input devices and a 1.5μF for the 24V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.


Maximum Capacitive Load

The MIW1500 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 220µF maximum capacitive load for dual outputs and 470µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.

The derating curves are determined from measurements obtained in a test setup.

