FEATURES

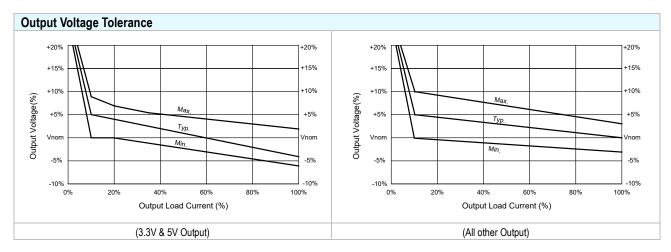
- ► Industrial SMD Package
- ► Unregulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +90°C
- ► Cleaning-washable Process Available(option)
- ► Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- ► Tape & Reel Package Available
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval

PRODUCT OVERVIEW

The MINMAX MSLU100 series is a range of 1W DC-DC converters in a SMD- Package featuring I/O isolation of 1500VDC. The very small footprint makes this product the ideal solution for many applications where a voltage has to be isolated i.e for noise reduction, ground loop elimination, in digital interfaces or where a converted voltage is required.

An excellent efficiency allows an operating temperature range of -40°C to +90°C. With a new package design these converters are fully qualified for the higher temperature profile used in lead-free reflow solder processes. For automated SMD production lines the product can be supplied in tape & reel package.

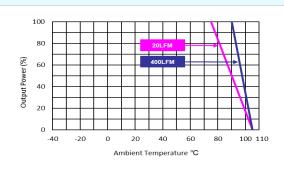
Model Selec	tion Guide								
Model Number	Input Voltage	Output Voltage	Output	Current	Input (Current	Load Regulation	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load			@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%
MSLU101		3.3	300	6	271		10		73
MSLU102		5	200	4	256		10		78
MSLU103		9	110	2	254		10	33	78
MSLU104	5	12	84	1.5	259	30	8		78
MSLU105	(4.5 ~ 5.5)	15	67	1	254	30	7		79
MSLU106		±5	±100	±2	270		10		74
MSLU108		±12	±42	±0.8	259		8	33#	78
MSLU109		±15	±33	±0.7	254		7		78
MSLU111		3.3	300	6	112		8		74
MSLU112		5	200	4	109		8		76
MSLU113		9	110	2	106		8	33	78
MSLU114	12	12	84	1.5	106	15	5	33#	79
MSLU115	(10.8 ~ 13.2)	15	67	1	105	15	5		80
MSLU116]	±5	±100	±2	113		8		74
MSLU118		±12	±42	±0.8	108		5		78
MSLU119		±15	±33	±0.7	104		5		79
MSLU154	15	12	84	1.5	86	14	5	33	78
MSLU155	(13.5 ~ 16.5)	15	67	1	86	14	5	33	78
MSLU121] [3.3	300	6	58		8	_	72
MSLU122] [5	200	4	54		8	_	78
MSLU123] [9	110	2	54	8	8	_ 33	77
MSLU124	24	12	84	1.5	55		5	_	77
MSLU125	(21.6 ~ 26.4)	15	67	1	53		5		79
MSLU126] [±5	±100	±2	57		8	_	73
MSLU128] [±12	±42	±0.8	54	9	5	33#	78
MSLU129		±15	±33	±0.7	53		5		78


^{*} Min. Output Current for Lower Load Regulation

For each output

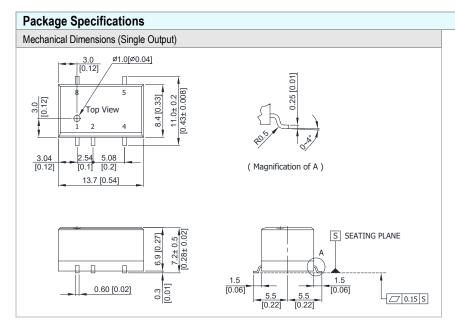
Input Specifications					
Parameter	Conditions/Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	
Innut Veltage Dange	12V Input Models	10.8	12	13.2	
Input Voltage Range	15V Input Models	13.5	15	16.5	
	24V Input Models	21.6	24	26.4	VDC
	5V Input Models	-0.7		9	VDC
land Compa Valtage (4 and man)	12V Input Models	-0.7		18	
Input Surge Voltage (1 sec. max.)	15V Input Models	-0.7		20	
	24V Input Models	-0.7		30	
Internal Filter All Models		Internal (Capacitor		

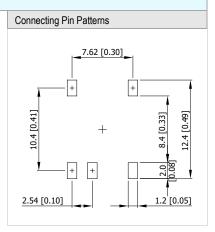
Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%
Load Regulation	lo=20% to 100%		See Model S	election Guide	
Ripple & Noise	0-20 MHz Bandwidth			120	mV _{P-P}
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	0.5 Second Max	x., Automatic R	lecovery		

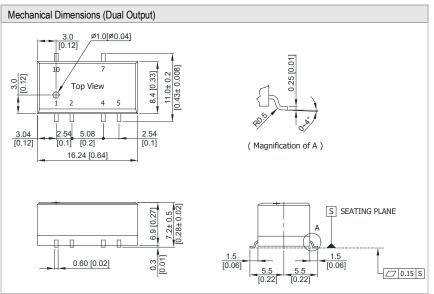


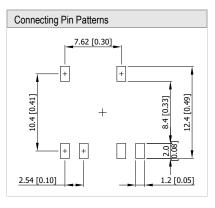
General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O location Voltage	60 Seconds	1500			VDC	
I/O Isolation Voltage	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			ΜΩ	
I/O Isolation Capacitance	100kHz, 1V		40	100	pF	
Switching Frequency		50	100	140	kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000			Hours	
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Le	vel 2		
Cofety Approvale	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

Environmental Specifications			
Parameter	Min.	Max.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+90	°C
Case Temperature		+105	°C
Storage Temperature Range	-50	+125	°C
Humidity (non condensing)		95	% rel. H
Lead-free Refiow Solder Process	IPC	JEDEC J-STD-0	20D.1






Notes


- Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- We recommend to protect the converter by a fast blow fuse in the input supply line.
- Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- 6 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

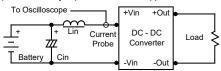
- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 (X.XXX±0.005)
- ► Pins ±0.05 (±0.002)

Pin Connections				
Pin	Single Output Dual Output			
1	-Vin	-Vin		
2	+Vin	+Vin		
3	No Pin	No Pin		
4	-Vout	Common		
5	+Vout	-Vout		
6	No Pin	No Pin		
7	No Pin	+Vout		
8	NA	No Pin		
9		No Pin		
10		NA		

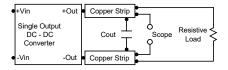
NA: Not Available	for	Electrical	Connection
-------------------	-----	------------	------------

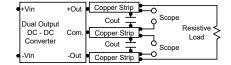
Physical Characteristics		12.7v9.4v6.0mm (0.54v0.22v0.27 inches)
Case Size (Single Output)	•	13.7x8.4x6.9mm (0.54x0.33x0.27 inches)
Case Size (Dual Output)	:	16.24x8.4x6.9mm (0.64x0.33x0.27 inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	:	Phosphor Bronze with Tin Plate Over Nickel Subplate
Weight (Single Output)	:	1.7g
Weight (Dual Output)	:	2.0g

E-mail:sales@minmax.com.tw Tel:886-6-2923150


er Code Table		
Standard	For cleaning-washable process	
MSLU101	MSLU101-W	
MSLU102	MSLU102-W	
MSLU103	MSLU103-W	
MSLU104	MSLU104-W	
MSLU105	MSLU105-W	
MSLU106	MSLU106-W	
MSLU108	MSLU108-W	
MSLU109	MSLU109-W	
MSLU111	MSLU111-W	
MSLU112	MSLU112-W	
MSLU113	MSLU113-W	
MSLU114	MSLU114-W	
MSLU115	MSLU115-W	
MSLU116	MSLU116-W	
MSLU118	MSLU118-W	
MSLU119	MSLU119-W	
MSLU154	MSLU154-W	
MSLU155	MSLU155-W	
MSLU121	MSLU121-W	
MSLU122	MSLU122-W	
MSLU123	MSLU123-W	
MSLU124	MSLU124-W	
MSLU125	MSLU125-W	
MSLU126	MSLU126-W	
MSLU128	MSLU128-W	
MSLU129	MSLU129-W	

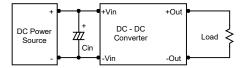
Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

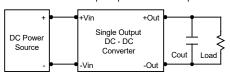
Peak-to-Peak Output Noise Measurement Test

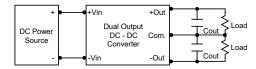
Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

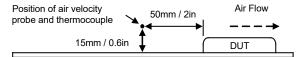
Maximum Capacitive Load

The MSLU100 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 33µF maximum capacitive load. The maximum capacitance can be found in the data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 5V input devices, a $1.0\mu\text{F}$ for the 12V input devices and a $0.47\mu\text{F}$ for the 24V input devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

