FEATURES

- Smallest Encapsulated 20W Converter
- ► Ultra-compact 1" X 1" Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 89%
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► No Min. Load Requirement
- Overload/Voltage and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MJWI20 series is a new generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 20W in a shielded metal package with dimensions of just 1.0"x1.0"x 0.4". All models provide ultra-wide 4:1 input voltage range and tight output voltage regulation.

State-of the-art circuit topology provides a very high efficiency up to 89% which allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off, trimmable output voltage, overload, over voltage and short circuit protection and safety approval UL/cUL/IEC/EN 62368-1(60950-1) with CB report and CE marking.

Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and other space critical applications.

Model Selection	Guide									
Model	Input	Output	Out	put	Inpu	t	Reflected	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Cur	rent	Curre	ent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA (typ.)	VDC	μF	%
MJWI20-24S033		3.3	4500	0	711	80		3.9	10300	87
MJWI20-24S05		5	4000	0	936	90		6.2	6800	89
MJWI20-24S12	0.4	12	1670	0	938	40		15	1200	89
MJWI20-24S15	24 (9 ~ 36)	15	1340	0	941	40	50	18	750	89
MJWI20-24S24	(9 - 30)	24	835	0	949	40		30	300	88
MJWI20-24D12		±12	±835	±60	938	40		±15	680#	89
MJWI20-24D15		±15	±670	±50	941	40		±18	380#	89
MJWI20-48S033		3.3	4500	0	352	40		3.9	10300	88
MJWI20-48S05		5	4000	0	468	45		6.2	6800	89
MJWI20-48S12	40	12	1670	0	469	25		15	1200	89
MJWI20-48S15	48 (18 ~ 75)	15	1340	0	471	25	30	18	750	89
MJWI20-48S24	(10 - 13)	24	835	0	474	25		30	300	88
MJWI20-48D12		±12	±835	±60	469	25		±15	680#	89
MJWI20-48D15		±15	±670	±50	471	25		±18	380#	89

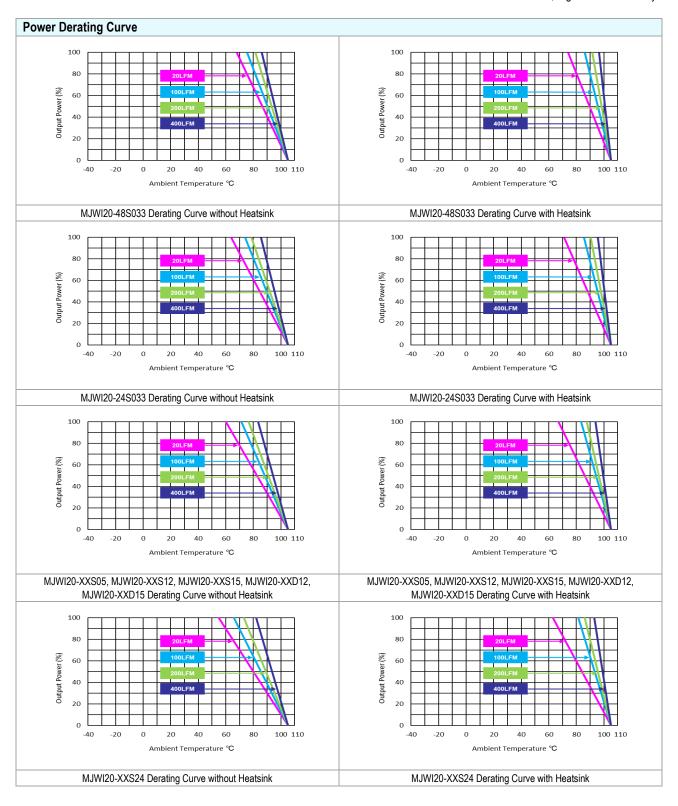
For each output

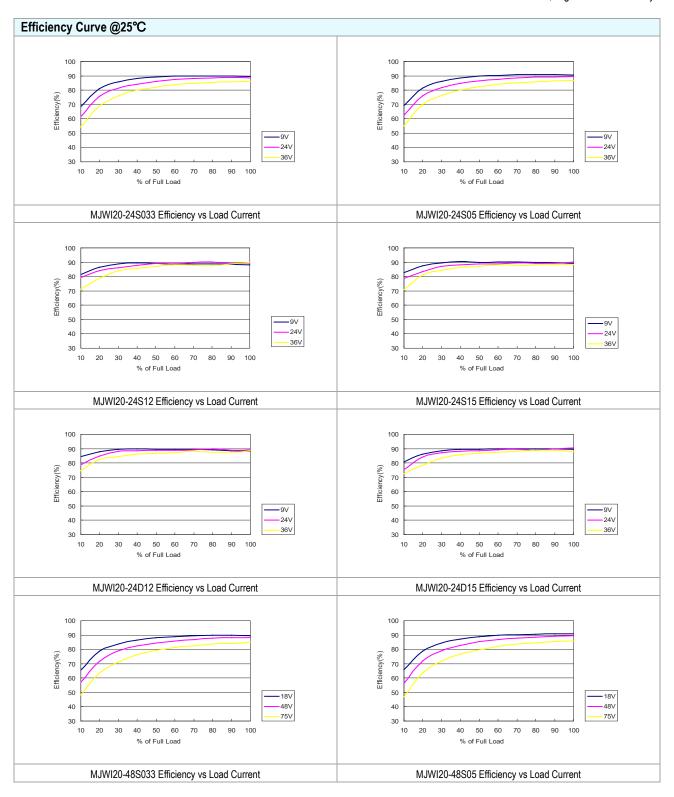
Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
land Compa Valtage (4 and man)	24V Input Models	-0.7		50	
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100	VDC
Chart I In Thurshald Valters	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models	Internal LC Type			
Conducted EMI	All Wodels	Internal LC Filter (for EN 55032, Class A)			

Remote On/Off Control						
Parameter	Conditions	Max.	Unit			
Converter On	3.5V ~ 12V or Open Circuit					
Converter Off	0V ~ 1.2V or Short Circuit					
Control Input Current (on)	Vctrl = 5.0V 0.5					
Control Input Current (off)	Vctrl = 0V0.5					
Control Common	Referenced to Negative Input					
Standby Input Current	Nominal Vin 10					

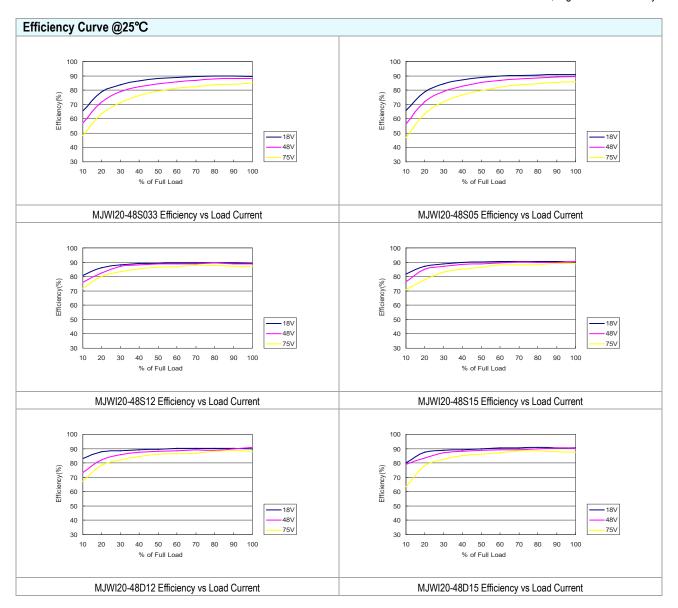
Output Specifications								
Parameter	Condition	Conditions / Model			Тур.	Max.	Unit	
Output Voltage Setting Accuracy						±1.0	%Vnom.	
Output Voltage Balance	Dual Output, B	alanced Loa	nds			±2.0	%	
Line Regulation	Vin=Min. to Max. @Full Load	Sin	gle Output			±0.2	%	
Line Regulation	VIII-IVIIII. 10 IVIAX. @Fuii Load	Dual Output				±0.5	%	
		Single	3.3V & 5V			±0.5	%	
Load Regulation	Io=0% to 100%	Output	12V,15V & 24V			±0.2	%	
		Dual Output				±1.0	%	
Load Cross Regulation (Dual Output)	Asymmetrical Load 2	Asymmetrical Load 25%/100% Full Load				±5.0	%	
		3.3V & 5V Models ₍₃₎			75		mV _{P-P}	
Ripple & Noise	0-20 MHz Bandwidth	12V & 15\	/ & Dual Models ₍₃₎		100		mV _{P-P}	
		24V Models ₍₃₎			150		mV _{P-P}	
Transient Recovery Time	25% Lood S	ton Chango			300		μsec	
Transient Response Deviation	25% L0du 3	25% Load Step Change			±3	±5	%	
Temperature Coefficient					±0.02	%/°C		
Trim Up / Down Range (See Page 8)	% of Nominal Output Voltage				±10	%		
Over Load Protection	Hiccup				150		%	
Short Circuit Protection		Continuous, Automatic Recovery (Hiccup Mode 1.5Hz typ.)						

General Specifications							
Parameter	Conditions		Тур.	Max.	Unit		
I/O lealation Valtage	60 Seconds	1500			VDC		
I/O Isolation Voltage	1 Second	1800			VDC		
Isolation Voltage Input/Output to case	60 Seconds	1000			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V			1500	pF		
Switching Frequency			330		kHz		
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	451,600			Hours		
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 & 60950-1(CB-report)						


E-mail:sales@minmax.com.tw Tel:886-6-2923150



Environmental Specifications						
Parameter	Conditions / Model		Ma	Unit		
Parameter	Conditions / Model	Min.	without Heatsink	with Heatsink	Unit	
	MJWI20-48S033		+68	+74		
Occasion Audioni Terroretor Barre	MJWI20-24S033		+64	+71		
Operating Ambient Temperature Range Nominal Vin, Load 100% Inom.	MJWI20-XXS05, MJWI20-XXS12	-40			°C	
(for Power Derating see relative Derating Curves)	MJWI20-XXS15, MJWI20-XXD12	-40	+60	+67		
(in 1 and 2 stating and totaling but 130)	MJWI20-XXD15					
	MJWI20-XXS24		+55	+63		
	50LFM Convection without Heatsink	18.2			°C/W	
	50LFM Convection with Heatsink	15.3			°C/W	
	100LFM Convection without Heatsink 13.9			°C/W		
Thermal Impedance	100LFM Convection with Heatsink	8.8			°C/W	
merma impedance	200LFM Convection without Heatsink	12.1			°C/W	
	200LFM Convection with Heatsink	6.8			°C/W	
	400LFM Convection without Heatsink	9.1			°C/W	
	400LFM Convection with Heatsink 4.6			°C/W		
Case Temperature			+10	5	°C	
Storage Temperature Range		-50	+12	.5	°C	
Humidity (non condensing)			95	i	% rel. H	
RFI	Six-Sided Sl	nielded, Meta	al Case			
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C	



Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a 1μF/50V MLCC and a 10μF/50V Tantalum Capacitor.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

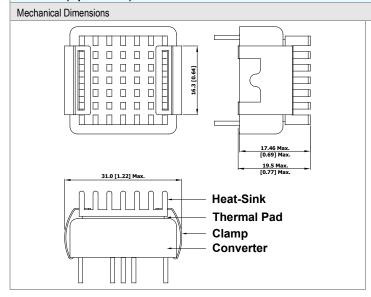
Pin Connections							
Pin	Single Output	Dual Output	Diameter mm (inches)				
1	+Vin	+Vin	Ø 1.0 [0.04]				
2	-Vin	-Vin	Ø 1.0 [0.04]				
3	+Vout	+Vout	Ø 1.0 [0.04]				
4	Trim	Common	Ø 1.0 [0.04]				
5	-Vout	-Vout	Ø 1.0 [0.04]				
6	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]				

- > All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.25 (X.XX±0.01)

X.XX±0.13 (X.XXX±0.005)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics


Case Size : 25.4x25.4x10.2mm (1.0x1.0x0.4 inches)

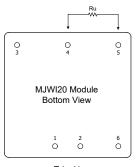
Case Material : Metal With Non-Conductive Baseplate

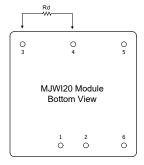
Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy
Weight : 15g

Heatsink (Option -HS)

Heatsink Material: Aluminum Finish: Anodic treatment (black)


Weight: 2g


- ► The advantages of adding a heatsink are:
- 1.To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.

External Output Trimming

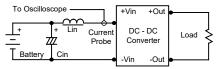
Output can be externally trimmed by using the method shown below

Trim Up

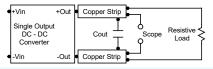
Trim Down

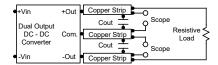
	MJWI20-	-XXS033	MJWI20	-XXS05	MJWI20	-XXS12	MJWI20	-XXS15	MJWI20	-XXS24
Trim Range (%)	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up (kΩ)						
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72

Order Code Table	
Standard	With heatsink
MJWI20-24S033	MJWI20-24S033-HS
MJWI20-24S05	MJWI20-24S05-HS
MJWI20-24S12	MJWI20-24S12-HS
MJWI20-24S15	MJWI20-24S15-HS
MJWI20-24S24	MJWI20-24S24-HS
MJWI20-24D12	MJWI20-24D12-HS
MJWI20-24D15	MJWI20-24D15-HS
MJWI20-48S033	MJWI20-48S033-HS
MJWI20-48S05	MJWI20-48S05-HS
MJWI20-48S12	MJWI20-48S12-HS
MJWI20-48S15	MJWI20-48S15-HS
MJWI20-48S24	MJWI20-48S24-HS
MJWI20-48D12	MJWI20-48D12-HS
MJWI20-48D15	MJWI20-48D15-HS


Order Code For Heatsink kit (including: Heatsink x1, Clamp x 2, Thermal Pad x1)
HS-J001
21.5[0.85]Max.

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

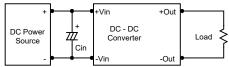
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

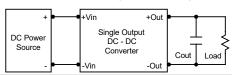
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500µA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 6) at logic high (3.5V to 12V) is 10mA.

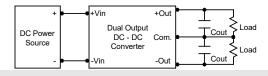
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

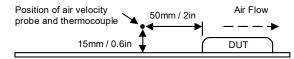
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $10\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load

The MJWI20 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd. 2022/04/15 REV:25 Page 10 of 10