

FEATURES

- ► Industrial Standard SMD Package
- ► Unregulated Output Voltage
- ► I/O Isolation 4000VAC with Reinforced Insulation, rated for 250Vrms **Working Voltage**
- ► Low I/O Leakage Current < 2µA
- ▶ Operating Ambient Temp. Range -40°C to 95°C
- ▶ Cleaning-washable Process Available (option)
- ➤ Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- ► Tape & Reel Package Available
- ► Short Circuit Protection
- ► Medical EMC Standard with 4th Edition of EMI EN 55011 and EMS EN 60601-1-2 Approved
- ► Medical Safety with 2xMOPP per 3rd Edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 Approved with CE Marking

PRODUCT OVERVIEW

The MINMAX MSCU01M series is a new range of medical approved 1W isolated DC-DC converter within enclosed SMD-14 package which specifically design for medical applications. There are 15 models available for input voltage of 5, 12, 24VDC and 5, 12, 15, ±12, ±15VDC output. The I/O isolation is specified for 4000VAC with reinforced insulation, which rated for 250Vrms working voltage. Further features include short circuit protection, low I/O leakage current 2µA max. and operating ambient temp. range by -40°C to 95°C without derating. MSCU01M series conform to 4th edition medical EMC standard, medical safety with 2xMOPP (Means Of Patient Protection) per 3rd edition of IEC/EN 60601-1 & ANSI/AAMI ES60601-1 approved.

The MSCU01M series offer a superior solution for demanding applications in medical instrument requesting a certified supplementary and reinforced insulation system to comply with latest medical safety approval for 2xMOPP requirement.

Model Selection G	Guide							
Model Number	Input Voltage	Output Voltage	Output	Current	Input C	Current	Max. capacitive Load	Efficiency (typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	μF	%
MSCU01-05S05M		5	200	4	263			76
MSCU01-05S12M	_	12	84	1.68	252		220	80
MSCU01-05S15M	5	15	68	1.36	246	50		83
MSCU01-05D12M	(4.5 ~ 5.5)	±12	±42	±0.84	252		400#	80
MSCU01-05D15M		±15	±33	±0.66	236		100#	84
MSCU01-12S05M		5	200	4	110			76
MSCU01-12S12M	10	12	84	1.68	106		220	79
MSCU01-12S15M	12	15	68	1.36	106	35		80
MSCU01-12D12M	(10.8 ~ 13.2)	±12	±42	±0.84	106		400#	79
MSCU01-12D15M		±15	±33	±0.66	103		100#	80
MSCU01-24S05M		5	200	4	55			76
MSCU01-24S12M		12	84	1.68	53		220	80
MSCU01-24S15M	24	15	68	1.36	53	20		80
MSCU01-24D12M	(21.6 ~ 26.4)	±12	±42	±0.84	53		400#	80
MSCU01-24D15M		±15	±33	±0.66	52		100#	80

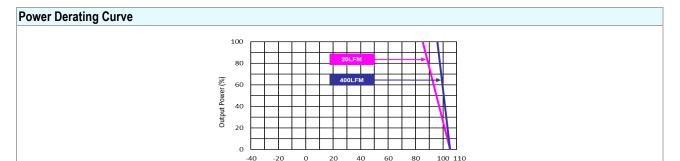
^{*} Min. Output Current for Lower Load Regulation

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	
Input Voltage Range	12V Input Models	10.8	12	13.2	
	24V Input Models		24	26.4	VDC
	5V Input Models	-0.7		9	VDC
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models			30	
Input Filter	All Models		Internal (Capacitor	

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy			±1.0	±3.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%
Load Regulation	Io=10% to 100%			±10	%
Ripple & Noise	0-20 MHz Bandwidth			100	mV _{P-P}
Temperature Coefficient			±0.01	±0.02	%/°C
Short Circuit Protection	Continuous, Automa	atic Recovery			

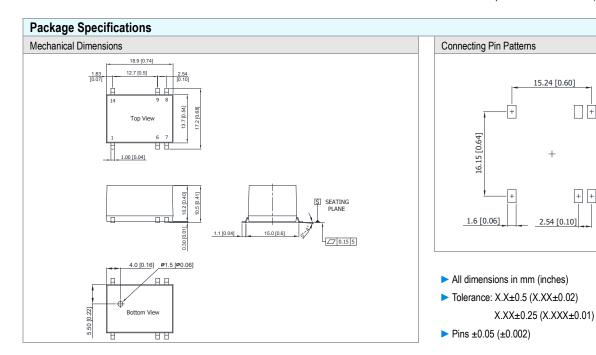
Isolation, Safety Standards					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds Reinforced insulation, rated for 250Vrms working voltage	4000			VAC
Leakage Current	240VAC, 60Hz			2	μA
I/O Isolation Resistance	500 VDC	10			GΩ
I/O Isolation Capacitance	100kHz, 1V		20		pF
Cafat Chandanda	ANSI/AAMI ES60601-1, CAN/C	SA-C22.2 No.	60601-1		
Safety Standards	IEC/EN 60601-1 3 rd Ed	ition 2xMOPP			
Safety Approvals	ANSI/AAMI ES60601-1 2xMOPP recognition(UL certifi	cate), IEC/EN	60601-1 3rd E	Edition(CB-rep	ort)


General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Switching Frequency			55		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,771,507			Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Lev	rel 2	

EMC Specifications				
Parameter		Standards & Level		Performance
EMI	Conduction	EN 55011	With external components	Class A
EMI	Radiation	EN 33011	Without external components	Class A ₍₅₎
	EN 60601-1-2 4th			
	ESD	EN 61000-4-2 Air ±	15kV , Contact ± 8kV	Α
	Radiated immunity	EN 61000	-4-3 10V/m	Α
EMS	Fast transient (6)	EN 61000)-4-4 ±2kV	Α
	Surge (6)	EN 61000)-4-5 ±1kV	Α
	Conducted immunity	EN 61000-	4-6 10Vrms	Α
	PFMF	EN 61000	-4-8 30A/m	A

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Environmental Specifications				
Parameter	Min	. 1	Мах.	Unit
Operating Ambient Temperature Range (See Power Derating Curve)	-40		+95	°C
Case Temperature			- 105	°C
Storage Temperature Range	-50	-	- 125	°C
Humidity (non condensing)			95	% rel. H
Lead-free Reflow Solder Process	I	PC/JEDEC	J-STD-0)20D.1


Ambient Temperature °C

Notes

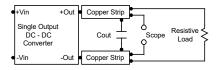
- Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- We recommend to protect the converter by a slow blow fuse in the input supply line.
- Other input and output voltage may be available, please contact MINMAX.
- 5 To meet EN 55011 Class A an external filter, please contact MINMAX.
- 6 To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

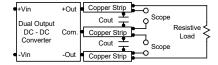
13.7 [0.54] 18.6 [0.73]

DC-DC CONVERTER 1W, Reinforced Insulation, Medical Safety

Pin Conn	ections	
Pin	Single Output	Dual Output
1	-Vin	-Vin
6	NC	Common
7	NC	-Vout
8	+Vout	+Vout
9	-Vout	Common
14	+Vin	+Vin

Physical Characteristics		
Case Size	:	18.9x13.7x10.2 mm (0.74x0.54x0.40 inches)
Case Material	:	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	:	Phosphor Bronze with Tin Plate Over Copper Subplate
Weight	:	4.1g

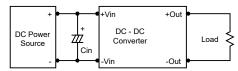

NC: No Connection


Code Table		
Standard	For cleaning-washable process	
MSCU01-05S05M	MSCU01-05S05M-W	
MSCU01-05S12M	MSCU01-05S12M-W	
MSCU01-05S15M	MSCU01-05S15M-W	
MSCU01-05D12M	MSCU01-05D12M-W	
MSCU01-05D15M	MSCU01-05D15M-W	
MSCU01-12S05M	MSCU01-12S05M-W	
MSCU01-12S12M	MSCU01-12S12M-W	
MSCU01-12S15M	MSCU01-12S15M-W	
MSCU01-12D12M	MSCU01-12D12M-W	
MSCU01-12D15M	MSCU01-12D15M-W	
MSCU01-24S05M	MSCU01-24S05M-W	
MSCU01-24S12M	MSCU01-24S12M-W	
MSCU01-24S15M	MSCU01-24S15M-W	
MSCU01-24D12M	MSCU01-24D12M-W	
MSCU01-24D15M	MSCU01-24D15M-W	

Test Setup

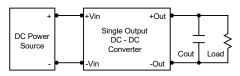
Peak-to-Peak Output Noise Measurement Test

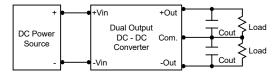
Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout.. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

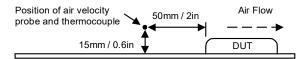
Maximum Capacitive Load

The MSCU01M series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 100µF maximum capacitive load for dual outputs and 220µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $2.2\mu\text{F}$ for the 5V input devices, a $1.0\mu\text{F}$ for the 12V input devices and a $0.47\mu\text{F}$ for the 24V input devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

