FEATURES

- ► Industrial SMD Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► Overload and Short Circuit Protection
- ► Remote On/Off Control
- ➤ Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- ► Tape & Reel Package Available
- ► UL/cUL/IEC/EN 60950-1 Safety Approval

PRODUCT OVERVIEW

The MINMAX MSKW2000 series is a range of isolated 5W DC-DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges.

These products are in a low profile SMD package with dimensions of 33.4 x 20.8 x 9.8 mm. All models are qualified for lead free reflow solder processes according IPC J-STD-020D.1. An excellent efficiency allows an operating temperature range of -40°C to +85°C (with derating).

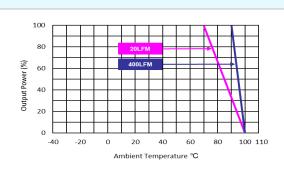
Typical applications for these converters are battery operated equipment and instrumentation, communication and general industrial electronics.

Model Input Number Voltage (Range)		Output	Output Current		Input Current		Reflected	Max. capacitive	Efficiency
	Voltage (Range)	Voltage	Max.	Min.	@Max. Load	@No Load	Ripple Current	Load	(typ.) @Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MSKW2021		3.3	1200	120	434	45	25	680	76
MSKW2022		5	1000	100	521				80
MSKW2023		12	417	41.7	502				83
MSKW2024	12 (9 ~ 18)	15	333	33.3	502				83
MSKW2025	(9~10)	±5	±500	±50	521			100#	80
MSKW2026		±12	±208	±20.8	501				83
MSKW2027		±15	±167	±16.7	503				83
MSKW2031		3.3	1200	120	212	15	15	680	78
MSKW2032		5	1000	100	254				82
MSKW2033		12	417	41.7	245				85
MSKW2034	24 (18 ~ 36)	15	333	33.3	245				85
MSKW2035	(10~30)	±5	±500	±50	254				82
MSKW2036		±12	±208	±20.8	245			100#	85
MSKW2037		±15	±167	±16.7	246				85
MSKW2041		3.3	1200	120	106				78
MSKW2042		5	1000	100	127			000	82
MSKW2043		12	417	41.7	123			680	85
MSKW2044	48 (36 ~ 75)	15	333	33.3	122	6	10		85
MSKW2045	(36 ~ 75)	±5	±500	±50	127				82
MSKW2046		±12	±208	±20.8	122			100#	85
MSKW2047		±15	±167	±16.7	123				85

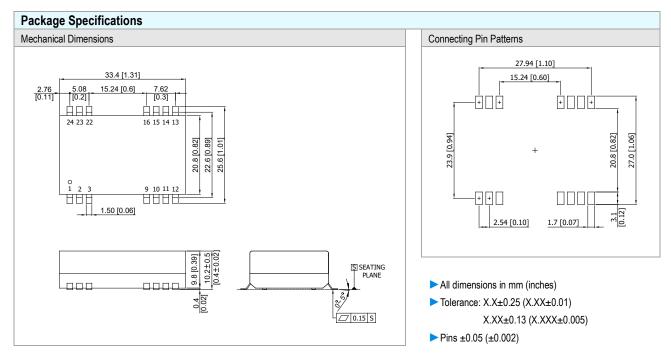
For each output

Input Specifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
	12V Input Models	-0.7		25		
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50		
	48V Input Models	-0.7		100		
	12V Input Models	7.5	8	9	VDC	
Start-Up Threshold Voltage	24V Input Models	14	16	18		
	48V Input Models	30	33	36		
	12V Input Models	6.5	7	8		
Under Voltage Shutdown	24V Input Models	13	15	17		
	48V Input Models	28	31	34		
Short Circuit Input Power			1000	3000	mW	
nternal Power Dissipation				2500	mW	
nput Filter	All Models		Internal Pi Type			
Conducted EMI			Compliance to EN 55022, class A			

Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	2.5V ~ 5.5V or Open Circuit				
Converter Off	-0.7V ~ 0.8V				
Control Input Current (on)	Vctrl = Min. to Max.			-200	μA
Control Input Current (off)	Vctrl = Min. to Max.			-300	μA
Control Common	Referenced to Negative Input				
Standby Input Current				10	mA


Output Specifications					
Parameter	Conditions	Min.	Typ.	Max.	Unit
Output Voltage Setting Accuracy				±1.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
Line Regulation	Vin=Min. to Max.		±0.1	±0.3	%
Load Regulation	lo=20% to 100%		±0.3	±1.0	%
Ripple & Noise	0-20 MHz Bandwidth			85	mV _{P-P}
Transient Recovery Time	250/ Lond Ston Change		250	500	μsec
Transient Response Deviation	25% Load Step Change		±2	±6	%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	115	140	165	%
Short Circuit Protection	Continuous, Automatic Recovery				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
UO la alatian Valtana	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Seconds	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		650	750	pF
Switching Frequency		200	260	350	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign		1,000,000		Hours
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Lev	rel 2	
Safety Approvals	UL/cUL 60950-1 recognition(CSA certificate)				


Environmental Specifications					
Parameter	Conditions	Min.	Max.	Unit	
Operating Ambient Temperature Range (See Power Derating Curve)		-40	+85	°C	
Case Temperature			+100	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Lead-free Reflow Solder Process IPC/JEDEC J-STD-020D.1					

Notes

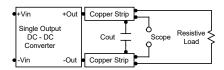
- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

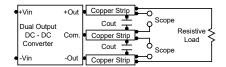
Pin Connections				
Pin	Single Output	Dual Output		
1	Remote On/Off	Remote On/Off		
2	-Vin	-Vin		
3	-Vin	-Vin		
9	NC	Common		
10	NC	NC		
11	NC	-Vout		
12	NC	NC		
13	NC	NC		
14	+Vout	+Vout		
15	NC	NC		
16	-Vout	Common		
22	+Vin	+Vin		
23	+Vin	+Vin		
24	NC.	NC.		


Physical Characte	Physical Characteristics				
Case Size	:	33.4x20.8x10.2mm (1.31x0.82x0.4 inches)			
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)			
Pin Material	:	Phosphor Bronze			
Weight	:	14g			

NC : No Connection

Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

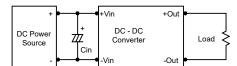
Peak-to-Peak Output Noise Measurement Test

Use a Cout $0.47 \mu F$ ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

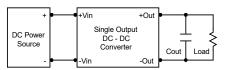
Remote On/Off

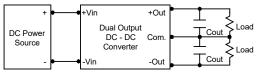
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is -0.7V to 0.8V. A logic high is 2.5V to 5.5V.


The maximum sink current of the switch at on/off terminal during a logic low is 300μ A. The maximum sink current of the switch at on/off terminal = 2.5 to 5.5V is 200μ A or open.

Overcurrent Protection

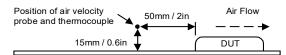
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $3.3\mu\text{F}$ for the 12V input devices and a $2.2\mu\text{F}$ for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

The MSKW2000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend $100\mu\text{F}$ maximum capacitive load for dual outputs and $680\mu\text{F}$ capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd.