

# **FEATURES**

- ≥2"x 1"x 0.4" Metal Package
- ► Wide 2:1 Input Range
- ► Very high Efficiency up to 89%
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► Short Circuit Protection
- ► I/O-isolation 1500VDC
- ► Remote On/Off (Option)













# PRODUCT OVERVIEW

The MINMAX MKW3000 series is a range of isolated 20W DC-DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges. The product comes in a 2"x 1"x 0.4" metal package with industry standard pinout. An excellent efficiency allows an operating temperature range of -40°C to +80°C. MKW3000 series also offer remote On/Off control for flexible use.

Typical applications for these converters are battery operated equipment and instrumentation, distributed power systems, data communication and general industrial electronics.

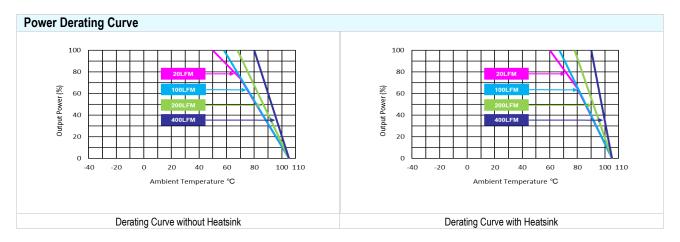
| Model          | Input     | Output  | Out     | tput | Input C    | Current  | Reflected | Max. capacitive | Efficiency |    |
|----------------|-----------|---------|---------|------|------------|----------|-----------|-----------------|------------|----|
| Number Voltage | Voltage   | Voltage | Current |      |            |          | Ripple    | Load            | (typ.)     |    |
|                | (Range)   |         | Max.    | Min. | @Max. Load | @No Load | Current   |                 | @Max. Load |    |
|                | VDC       | VDC     | mA      | mA   | mA(typ.)   | mA(typ.) | mA(typ.)  | μF              | %          |    |
| MKW3021        |           | 3.3     | 4000    | 240  | 1358       |          |           | 6800            | 81         |    |
| MKW3022        |           | 5       | 4000    | 240  | 1984       |          |           |                 | 84         |    |
| MKW3023        | 12        | 12      | 1670    | 100  | 1898       | 30       | 50        | 680             | 88         |    |
| MKW3024        | (9 ~ 18)  | 15      | 1340    | 80   | 1903       | 30 50    | 30        | 000             | 88         |    |
| MKW3026        |           | ±12     | ±835    | ±50  | 1898       |          |           | 270#            | 88         |    |
| MKW3027        |           | ±15     | ±670    | ±40  | 1903       |          |           |                 | 88         |    |
| MKW3031        |           | 3.3     | 4000    | 240  | 671        |          |           | 6800            | 82         |    |
| MKW3032        |           | 5       | 4000    | 240  | 980        |          |           | 0000            | 85         |    |
| MKW3033        | 24        | 12      | 1670    | 100  | 938        | 17       | 30        | 680             | 89         |    |
| MKW3034        | (18 ~ 36) | 15      | 1340    | 80   | 941        | 17       | 17 30     | 080             | 89         |    |
| MKW3036        |           | ±12     | ±835    | ±50  | 938        |          |           | 270#            | 89         |    |
| MKW3037        |           | ±15     | ±670    | ±40  | 941        |          |           | 270#            | 89         |    |
| MKW3041        |           | 3.3     | 4000    | 240  | 335        |          |           | 6800            | 82         |    |
| MKW3042        |           | 5       | 4000    | 240  | 490        |          |           | 0000            | 85         |    |
| MKW3043        | 48        | 12      | 1670    | 100  | 469        | 10       | 20        | 680             | 89         |    |
| MKW3044        | (36 ~ 75) | 15      | 1340    | 80   | 471        | 10       | 20        | 080             | 89         |    |
| MKW3046        |           | ±12     | ±835    | ±50  | 469        |          |           | 0.7             | 270#       | 89 |
| MKW3047        |           | ±15     | ±670    | ±40  | 471        |          |           | 270#            | 89         |    |

# For each output





| Input Specifications              |                  |                  |                                 |      |      |  |
|-----------------------------------|------------------|------------------|---------------------------------|------|------|--|
| Parameter                         | Model            | Min.             | Тур.                            | Max. | Unit |  |
|                                   | 12V Input Models | -0.7             |                                 | 25   |      |  |
| Input Surge Voltage (1 sec. max.) | 24V Input Models | -0.7             |                                 | 50   |      |  |
|                                   | 48V Input Models | -0.7             |                                 | 100  | VDC  |  |
|                                   | 12V Input Models | 8.6              | 8.8                             | 9    |      |  |
| Start-Up Threshold Voltage        | 24V Input Models | 17               | 17.5                            | 18   |      |  |
|                                   | 48V Input Models | 34               | 35                              | 36   |      |  |
|                                   | 12V Input Models | 8.1              | 8.3                             | 8.5  |      |  |
| Under Voltage Shutdown            | 24V Input Models | 16               | 16.5                            | 17   |      |  |
|                                   | 48V Input Models | 32               | 33                              | 34   |      |  |
| Short Circuit Input Power         |                  |                  |                                 | 3500 | mW   |  |
| Input Filter All Models           |                  | Internal LC Type |                                 |      |      |  |
| Conducted EMI                     |                  | (                | Compliance to EN 55022, class A |      |      |  |


| Remote On/Off Control       |                              |                     |      |      |      |
|-----------------------------|------------------------------|---------------------|------|------|------|
| Parameter                   | Conditions                   | Min.                | Тур. | Max. | Unit |
| Converter On                | 2.5V                         | ~ 100V or Open Cire | cuit |      |      |
| Converter Off               | 0V ~ 1V or Short Circuit     |                     |      |      |      |
| Control Input Current (on)  | Vctrl = 5.0V                 |                     |      | 5    | μA   |
| Control Input Current (off) | Vctrl = 0V                   |                     |      | -100 | μA   |
| Control Common              | Referenced to Negative Input |                     |      |      |      |
| Standby Input Current       | Nominal Vin                  |                     | 2    | 5    | mA   |

| Output Specifications           |                |                      |      |       |       |                   |
|---------------------------------|----------------|----------------------|------|-------|-------|-------------------|
| Parameter                       | Cond           | itions               | Min. | Тур.  | Max.  | Unit              |
| Output Voltage Setting Accuracy |                |                      |      |       | ±1.0  | %Vnom.            |
| Output Voltage Balance          | Dual Output, B | alanced Loads        |      | ±0.5  | ±2.0  | %                 |
| Line Regulation                 | Vin=Min. to Ma | ıx. @Full Load       |      | ±0.1  | ±0.3  | %                 |
| Load Decidation                 | lo=10% to 100% | 3.3Vout Models       |      | ±0.5  | ±1.0  | %                 |
| Load Regulation                 | 10-10% 10 100% | Other Models         |      | ±0.1  | ±0.5  | %                 |
| Ripple & Noise                  | 0-20 MHz       | Bandwidth            |      | 55    | 80    | mV <sub>P-P</sub> |
| Transient Recovery Time         | 25% Load C     | 25% Load Step Change |      | 150   | 300   | μsec              |
| Transient Response Deviation    | 25% L0au 5     | tep Change           |      | ±2    | ±4    | %                 |
| Temperature Coefficient         |                |                      |      | ±0.01 | ±0.02 | %/°C              |
| Over Load Protection            | Fold           | Foldback             |      |       | 160   | %                 |
| Short Circuit Protection        |                | Continuou            |      |       |       |                   |

| General Specifications    |                                                                         |      |         |      |       |
|---------------------------|-------------------------------------------------------------------------|------|---------|------|-------|
| Parameter                 | Conditions                                                              | Min. | Тур.    | Max. | Unit  |
| UO la daffa a Valla a a   | 60 Seconds                                                              | 1500 |         |      | VDC   |
| I/O Isolation Voltage     | 1 Second                                                                | 1800 |         |      | VDC   |
| I/O Isolation Resistance  | 500 VDC                                                                 | 1000 |         |      | MΩ    |
| I/O Isolation Capacitance | 100kHz, 1V                                                              |      | 1200    | 1500 | pF    |
| Switching Frequency       |                                                                         | 290  | 330     | 360  | kHz   |
| MTBF (calculated)         | MIL-HDBK-217F@25°C, Ground Benign                                       |      | 800,000 |      | Hours |
| Safety Approvals          | UL/cUL 60950-1 recognition (CSA certificate), IEC/EN 60950-1(CB-report) |      |         |      |       |



| Environmental Specifications                                   |      |      |          |  |
|----------------------------------------------------------------|------|------|----------|--|
| Parameter                                                      | Min. | Max. | Unit     |  |
| Operating Ambient Temperature Range (See Power Derating Curve) | -40  | +80  | °C       |  |
| Case Temperature                                               |      | +105 | °C       |  |
| Storage Temperature Range                                      | -50  | +125 | °C       |  |
| Humidity (non condensing)                                      |      | 95   | % rel. H |  |
| Lead Temperature (1.5mm from case for 10Sec.)                  |      | 260  | °C       |  |



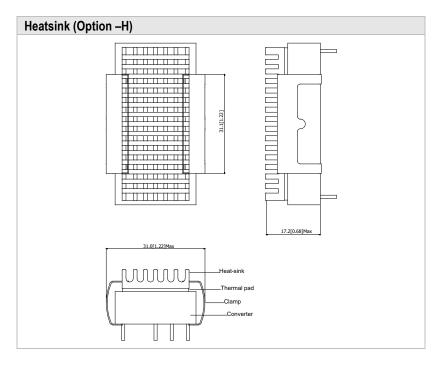
# **Notes**

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.



# Package Specifications Mechanical Dimensions Bottom View Bottom View | 1.1 | [0.04] | 10.16 | 10.16 | 10.16 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.40 | 10.4

| Pin Connections |               |             |                         |  |  |
|-----------------|---------------|-------------|-------------------------|--|--|
| Pin             | Single Output | Dual Output | Diameter<br>mm (inches) |  |  |
| 1               | +Vin          | +Vin        | Ø 1.00 [0.04]           |  |  |
| 2               | -Vin          | -Vin        | Ø 1.00 [0.04]           |  |  |
| 3               | +Vout         | +Vout       | Ø 1.00 [0.04]           |  |  |
| 4               | No Pin        | Common      | Ø 1.00 [0.04]           |  |  |
| 5               | -Vout         | -Vout       | Ø 1.00 [0.04]           |  |  |
| 6               | Remote        | On/Off      | Ø 1.00 [0.04]           |  |  |


- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 (X.XXX±0.005)
- ▶ Pin diameter Ø 1.0 ±0.05 (0.04±0.002)

# **Physical Characteristics**

Case Size : 50.8x25.4x10.2mm (2.0x1.0x0.40 inches)
Case Material : Metal With Non-Conductive Baseplate
Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy

Weight : 32g

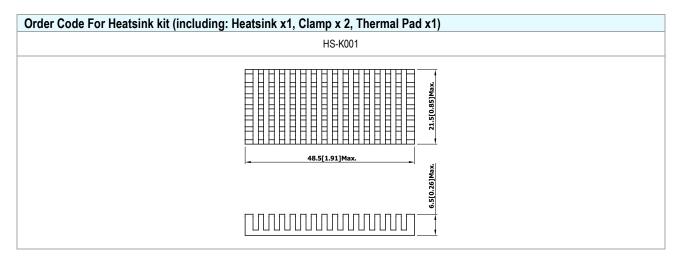


# Physical Characteristics

Heatsink Material : Aluminum

Finish : Black Anodized Coating

Weight : 9g


- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC-DC converter, please refer to Derating Curve.

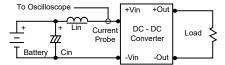
E-mail:sales@minmax.com.tw Tel:886-6-2923150





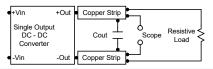
| rder Code Table |               |                       |                       |
|-----------------|---------------|-----------------------|-----------------------|
| Standard        | With heatsink | Without Remote On/Off | Without Remote On/Off |
|                 |               |                       | & With heatsink       |
| MKW3021         | MKW3021H      | MKW3021-N             | MKW3021H-N            |
| MKW3022         | MKW3022H      | MKW3022-N             | MKW3022H-N            |
| MKW3023         | MKW3023H      | MKW3023-N             | MKW3023H-N            |
| MKW3024         | MKW3024H      | MKW3024-N             | MKW3024H-N            |
| MKW3026         | MKW3026H      | MKW3026-N             | MKW3026H-N            |
| MKW3027         | MKW3027H      | MKW3027-N             | MKW3027H-N            |
| MKW3031         | MKW3031H      | MKW3031-N             | MKW3031H-N            |
| MKW3032         | MKW3032H      | MKW3032-N             | MKW3032H-N            |
| MKW3033         | MKW3033H      | MKW3033-N             | MKW3033H-N            |
| MKW3034         | MKW3034H      | MKW3034-N             | MKW3034H-N            |
| MKW3036         | MKW3036H      | MKW3036-N             | MKW3036H-N            |
| MKW3037         | MKW3037H      | MKW3037-N             | MKW3037H-N            |
| MKW3041         | MKW3041H      | MKW3041-N             | MKW3041H-N            |
| MKW3042         | MKW3042H      | MKW3042-N             | MKW3042H-N            |
| MKW3043         | MKW3043H      | MKW3043-N             | MKW3043H-N            |
| MKW3044         | MKW3044H      | MKW3044-N             | MKW3044H-N            |
| MKW3046         | MKW3046H      | MKW3046-N             | MKW3046H-N            |
| MKW3047         | MKW3047H      | MKW3047-N             | MKW3047H-N            |

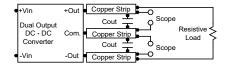







## **Test Setup**


# Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin  $(4.7\mu\text{H})$  and Cin  $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100 \text{ kHz})$  to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.



### Peak-to-Peak Output Noise Measurement Test

Use a Cout 1.0µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.





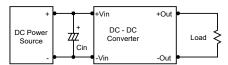
# **Technical Notes**

### Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is -0V to 1.0V. A logic high is 2.5V to 100V. The maximum sink current at on/off terminal during a logic low is -100µA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 100V) is 5µA.

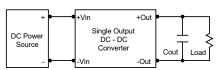
### Overload Protection

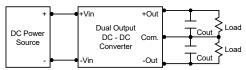
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


### Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

# Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

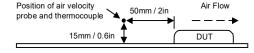

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 22μF for the 12V input devices and a 6.8μF for the 24V and 48V devices.



## Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use  $4.7\mu F$  capacitors at the output.






# Maximum Capacitive Load

The MKW3000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 270µF maximum capacitive load for dual outputs, 680µF capacitive load for 12V & 15V outputs and 6800µF capacitive load for 3.3V & 5V outputs. The maximum capacitance can be found in the data sheet.

# Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

