FEATURES

- ► Industrial DIP-16 Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +85°C
- ► Under-voltage, Overload and Short Circuit Protection
- ► Remote On/Off Control
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval

PRODUCT OVERVIEW

and instrumentation.

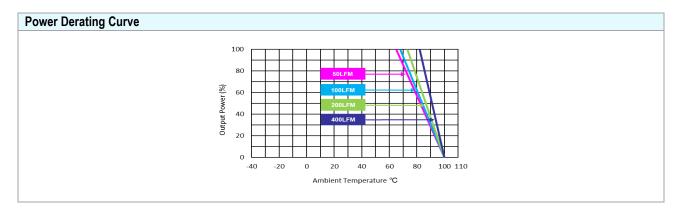
The MINMAX MGWI06 series is a new range of isolated 6W DC-DC converter modules featuring fully regulated output voltages and ultra-wide 4:1 input voltage ranges. These products are with a very small footprint occupying just 4.5cm2 (0.7 square in.) on PCB. An excellent efficiency allows an operating temperature range of -40°C to +85°C. Further features include remote On/Off control, under-voltage, over load and short circuit protection. The very compact dimensions of these DC-DC converters make them an ideal solution for many space critical applications in battery-powered equipment

Model	Input	Output	Output		Input Current		Max. capacitive	Efficiency
Number	Voltage	Voltage	Cui	Current				(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	μF	%
IGWI06-24S033		3.3	1450	218	262		220	76
MGWI06-24S05		5	1200	180	316		330	79
MGWI06-24S12		12	500	75	301			83
MGWI06-24S15	24	15	400	60	301	20	100	83
MGWI06-24S24	(9 ~ 36)	24	250	38	301	30		83
MGWI06-24D05		±5	±600	±90	301			82
MGWI06-24D12		±12	±250	±38	301		100#	83
MGWI06-24D15		±15	±200	±30	301			83
MGWI06-48S033		3.3	1450	218	131		000	76
MGWI06-48S05		5	1200	180	158		330	79
MGWI06-48S12		12	500	75	151			83
MGWI06-48S15	48 (18 ~ 75)	15	400	60	151	00	100	83
MGWI06-48S24		24	250	38	151	20		83
MGWI06-48D05		±5	±600	±90	151			82
MGWI06-48D12		±12	±250	±38	151		100#	83
MGWI06-48D15		±15	±200	±30	151			83

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	24V Input Models	-0.7		50	
nput Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100]
Chart I In Thursday I Valtage	24V Input Models			9	VDC
Start-Up Threshold Voltage	48V Input Models			18	
ladar Valtara Chritiania	24V Input Models			8.5	
Jnder Voltage Shutdown	48V Input Models			17	
nput Filter	Internal Pi Type		Pi Type		
Short Circuit Input Power	All Models			3000	mW
Conducted EMI		Compliance to EN 55022, class A			

E-mail:sales@minmax.com.tw Tel:886-6-2923150


Remote On/Off Control					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Converter On	2.5V ~ 50VDC or Open Circuit				
Converter Off	-0.7V ~ 0.8V				
Control Input Current (on)	Vin-RC=5V			500	μΑ
Control Input Current (off)	Vin-RC=0V			-500	μΑ
Control Common	Referenced to Negative Input				
Standby Input Current	Nominal Vin			10	mA

Output Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy			±1.0	±2.0	%Vnom.
Output Voltage Balance	Dual Output, Balanced Loads		±1.0		%
Line Regulation	Vin=Min. to Max. @Full Load		±0.5	±1.0	%
Load Regulation	lo=15% to 100%		±0.5	±1.2	%
Ripple & Noise	0-20 MHz Bandwidth		60	100	mV _{P-P}
Transient Recovery Time	050/ 1 10/ 01		300	600	μsec
Transient Response Deviation	25% Load Step Change		±3		%
Temperature Coefficient			±0.01	±0.02	%/°C
Over Load Protection	Foldback	110	150		%
Short Circuit Protection	Continuous, Automatic Recovery				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	60 Seconds	1500			VDC
	1 Seconds	1800			VDC
I/O Isolation Resistance	500 VDC	1000			ΜΩ
I/O Isolation Capacitance	100kHz, 1V		1200	1500	pF
Switching Frequency			330		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign		350,000		Hours
Safety Approvals	UL/cUL 62368-1 recognition(UL	certificate), IEC/I	EN 62368-1 & 609	50-1(CB-report)	

Environmental Specifications				
Parameter	Min.	Max.	Unit	
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C	
Case Temperature		+105	°C	
Storage Temperature Range	-50	+125	°C	
Humidity (non condensing)		95	% rel. H	
Lead Temperature		260	°C	
(1.5mm from case for 10Sec.)		200		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

Package Specifications Mechanical Dimensions 10.2 [0.40] 0.5 [0.02] Ø 0.50 [0.02] 2.54 10.16 [0.40] °-² 6 15.22 [0.60] 20.3 [0.80] **Bottom View** 16 11 5.08 1.9 [0.08] [0.20]21.6 [0.85]

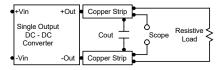
Pin Connections				
Pin	Single Output	Dual Output		
1	Remote On/Off	Remote On/Off		
2	-Vin	-Vin		
6	NC	Common		
8	NC	-Vout		
9	+Vout	+Vout		
11	-Vout	Common		
16	+Vin	+Vin		

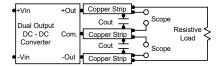
NC: No Connection

- ► All dimensions in mm (inches)
- ➤ Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 (X.XXX±0.005)

► Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

Physical Characteristics


Case Size	: 21	.6x20.3x10.2 mm (0.85x0.8x0.4 inches)
Case Material	: No	on-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	: Co	opper Alloy with Gold Plate Over Nickel Subplate
Weight	: 9.	1g



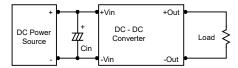
Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

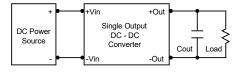
Technical Notes

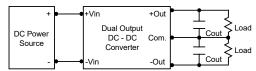
Remote On/Off


Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is -0.7V to 0.8V. A logic high is 2.5V to 50V. The maximum sink current of the switch at on/off terminal during a logic low is -500 μA. The maximum sink current of the switch at on/off terminal during a logic high is 500μA or open.

Overcurrent Protection

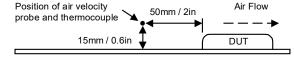
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $4.7\mu\text{F}$ for the 24V input devices and a $2.2\mu\text{F}$ for the 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.



Maximum Capacitive Load

The MGWI06 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

